APPENDIX

ARM INSTRUCTION SET

733

734

APPENDIX B + ARMINSTRUCTION SET

This appendix contains a summary of version v3 of the ARM instruction set architecture
(ISA), which was described in Part I of Chapter 3. A brief discussion of enhancements
introduced in later versions of the ISA is also included. The ARM register structure is
shown in Figure 3.1. Figure 3.2 shows the general format of an instruction. Here. we
give the details for the different types of instructions. All instructions are encoded into
a 32-bit word. The memory is byte addressable and addresses are 32 bits long. There
are two operand sizes: word (32 bits) and byte (8 bits). A byte operand occupies the
lower 8 bits of a processor register. When a byte operand is loaded into a register. the
high-order three bytes are cleared to zero.

B.1 INSTRUCTION ENCODING

The encodings for five types of instructions are shown in Figure B.1. Instruction types
are distinguished by the bit patterns starting at bit position b»;. The multiply instructions
in Figure B. 1/ are detected to be different from the group containing the other arithmetic
and logic instructions, shown in Figure B.1a, as follows. When I = 0 in the latter group.,
either bit b7 or bit b, is 0, whereas both of these bits are | in the multiply instructions.
Note that the Rn and Rd fields are reversed in the multiply instructions.

The sections that follow give the encoding details. with examples, for each of
the five types of instructions. The full ARM architecture has additional instructions
associated with coprocessor operations. We provide a brief discussion of them.

Conditional Execution of Instructions

The conditions for conditional execution of instructions are listed in Table B.1.
The mnemonic for a desired condition is added to an instruction OP-code mnemonic
as a suftix. The AL condition specifies that the instruction is executed irrespective of
the state of the condition code flags. This is the default condition if the suffix is omitted
in assembly language programs. For example, ADD (Add) and B (Branch) are always
executed. but ADDEQ and BEQ are executed only if Z = 1. Conditional execution of
an instruction often follows a Compare instruction. The Name column in Table B.1 is
written with this in mind.

B.1.1 ARITHMETIC AND LOGIC INSTRUCTIONS

Arithmetic and logic operations, as well as compare. test. and move operations, are
performed by instructions with the format shown in Figure B.2. The first operand is
contained in register Rn. The second operand is contained in register R or is an
unsigned 8-bit immediate operand, as indicated by the I bit. The result of the operation
specified by the 4-bit OP code is placed in register Rd. If the S bit is equal to 1. condition
code flags are affected by the result: otherwise (S = 0). they are not.

The general assembly language form for these instructions is

OP{Cond}{S} Rd.Rn.Operand 2

B.1 INSTRUCTION ENCODING

31 28 27 24 21 19 16 15 12 11 0
Condition|0 0|1 | OP code |S Rn Rd Operand 2

(a) Arithmetic, logic, compare, test, and move
3l 28 27 19 16 15 12 11 8 7 4 3 0
Condition|0 0 0 0 0 OJA[S Rd R Rs 1 001 Rm

(b) Multiply and Multiply Accumulate

31 28 27 19 16 15 12 11 0
Condition [0 | |T|P{U{B|W|L Rn Rd Oftset

(c) Single word or byte transfer from/to memory
31 28 27 19 16 15 0
Conditionfl 0 0 [P|U! - W|L Rn Register list

(d) Multiple word transfer from/to memory

31 28 27 23 0
Condition{! 0 | |K Oftset

Figure B.1

(e) Branch and Branch with Link

I Immediate P Pre/Post-index W Writeback
S Set U Up/Down L Load/Store
A Accumulate B Byte/Word K Link

ARM instruction encoding formats.

735

736

APPENDIX B

ARM INSTRUCTION SET

Table B.1 Condition field encoding in ARM instructions

Condition Condition Name

Condition code

field suffix test

b31 . . 628

0000 EQ Equal (zero) Z=1
0001 NE Not equal (nonzero) Z =10

0010 CS/HS Carry set/Unsigned higher or same C =1

0011 CC/LO Carry clear/Unsigned lower C=0
0100 MI Minus (negative) N=1
0101 PL Plus (positive or zero) N=90
0110 VS Overflow V=1

0111 vC No overflow V=290
1000 HI Unsigned higher CVZ=0
1001 LS Unsigned lower or same CvzZ=1
1010 GE Signed greater than or equal N&V =0
1011 LT Signed less than N&aV=1
1100 GT Signed greater than ZV(N&V)=0
1101 LE Signed less than or equal ZV(N®:V)=1
1110 AL Always

1111 Not used

For example, if the second operand is contained in a register (I = 0). the instruction
ADD RO.RI.R2

is executed unconditionally and performs the operation
RO « [RI] + [R2]

without affecting the condition code flags. If the OP code is changed to ADDS. the
flags are affected by the result of the operation. If the latter instruction is to be executed
conditionally, on the equal condition (EQ), the OP code is written as ADDEQS.

If the second operand is an immediate value (I = 1). it is given by the expression
#constant. For example.

ADD RORI#17
performs the operation
RO «- [RI]+ 17

The immediate value is zero-extended to 32 bits before being used in the operation.

B.1 INSTRUCTION ENCODING 737

31 28 24 21 19 16 15 12 11 0

Condition {0 0 }1 { OP code

wn
z

Rd Operand 2

‘——f Destination register

Operand | register

Set Condition code flags
0: Do not alter flags
1: Set tlags

0: Shift Rm

Operand 2 = shift [Rim]

11 8 7 0

1: Rotate Immediate

Operand 2 = rotate Immediate

Figure B.2 ARM arithmetic, logic, compare, test, and move instructions.

Shifting of Operand 2

» If Operand 2 is contained in a register (I = 0). it can be shifted before being used,
as shown in Figure B.3. The shift is specified in bits byy..s. 1If by = 0. a shift amount
in the range 0 through 31 is given by the 5-bit unsigned number in bits by;-7. The
type of shift is specified in bits bg and bs. The condition code flag C is involved
in the four shifts as shown in Figures 2.30 and 2.32. The rotate right operation
(ROR) is done without the C bit when the shift amount is nonzero. However, when
the shift amount is zero. the meaning is: rotate right one bit position including the
C bit. as shown in Figure 2.32d. This operation can be indicated in the assembly
language by using the mnemonic RRX (rotate right extended) with no shift amount
specified. An example of the instruction syntax when the shift amount is specified
directly in the instruction. as just described. is

ADD RO.R1.R2 LSL #4

which shifts the operand in R2 left 4 bit positions (thus multiplying it by 16)
before adding it to the contents of R1. If by = 1. the shift amount is specified in the

low-order 5 bits of register Rs. as shown in Figure B.3. For example, the instruction

ADD RO.RI.R2.LSRR3

738

APPENDIX B + ARM INSTRUCTION SET

11 5 43 0

Shift T Rm

11 7 6 5

Shift amount] 0

00 LSL logical shift left
01 LSRR logical shift right
10 ASR arithmetic shift right

11 ROR rotate right

Figure B.3 ARM shift operations on
operand 2 {Figure B.2) or address
offset {Figure B.5) contained in
register Rm.

shifts the contents of the operand in R2 to the right a number of positions specilied
by the contents of R3.

* If Operand 2 is an immediate operand (I = 1). it can be rotated to the right as
indicated in Figure B.2. This option permits a large number of 32-bit values to be
generated by rotating the unsigned 8-bit immediate value. The number of rotation
positions is 2n, where n is the 4-bit number contained in bits b, .¢. Therefore. the
range of rotations is an even number of bits from 0 through 30. This feature of the
ARM instruction set partly compensates for the lack of 32-bit immediate operands
in instructions. It is clear, however. that not all 32-bit values can be generated this
way. A short sequence of instructions. including rotations and OR operations. can
be used to synthesize 32-bit values that cannot be specified by rotation of a single
8-bit value.

The full set of 16 arithmetic and logic instructions is shown in Tables B.2 and B.3.
along with the two multiply instructions discussed in the next subsection. There are six
Add and Subtractinstructions. The Add-with-carry and Subtract-with-carry instructions
are needed to provide the capability to operate with multiple-word operands. Since only
Operand 2 can be shifted. the two Reverse Subtract instructions are provided to allow
the shifted operand to be the first operand of the subtract operation.

B.1 INSTRUCTION ENCODING
Table B.2 ARM arithmetic instructions
Mnemonic OP code Operation CC flags
(Name) performed affected
ifS=1

bay ... bay N|Z |V
ADD 0100 Rd — {Rn] + Oper2 x | x| x
(Add)
ADC 0101 Rd « [Rn] + Oper2 + [C] x | x| x
(Add with carry)
SUB 0010 Rd « [Rn] — Oper2 x | x| x
(Subtract)
SBC 0110 Rd — [Rn} —Oper2+ [C] =1 | x | x| x
(Subtract
with carry)
RSB 0011 Rd — Oper2 — [Rn] X | x| x
(Reverse
subtract)
RSC 0111 Rd — Oper2 — [Rn} +[C]-1| x | x | X
(Reverse subtract
with carry)
MUL (See Rd « [Rm] x [Rs] X | X
(Multiply) Figure B.4)
MLA (See Rd « [Rm] x [Rs| + [Rn] X | X
(Multiply Figure 3.4)

accumulate)

739

740 APPENDIX B + ARM INSTRUCTION SET

Table B.3 ARM logic, compare, test, and move instructions

Mnemonic OP code| Operation CC flags
(Name) performed affected
ifS=1
boy ... b2y N| Z| V
AND 0000] RAd—[Rn]AOper2 | x | x

(Logical AND)

ORR 1100] Rd—[Rn]VvOper2 | x | x
(Logical OR)

EOR 0001| Rd—[Rn]&Oper2 | x | x
(Exclusive-OR)

BIC 1110 Rde—[RnJA-Oper2| x | x
(Bit clear)

CMP 1 010]| [Rn]—-Oper2 x | x| x
(Compare)
CMN 1 011/ [Rn]+Oper2 x | x| x

(Compare negative)

TST 1000/ [Rr]AOper2 X | x
(Bit test)

TEQ 1001} [Rn}<Oper2 X | x
(Test equal)

MOV 1101 Rd— Oper2 X | x
(Move)
MVN 1111} Rd—-Oper2 X | x

(Move complement)

B.1 INSTRUCTION ENCODING 741

When an immediate value is used as Operand 2 in an Add or Subtract instruction,

it can only be a positive value. But the assembly language allows the instructions

ADD RORLl#-5
and

SUB RO.RI#-7
to be used. assembling them as

SUB RO.R1#5

and

ADD RORI1#7
respectively.

In addition 1o the four logic instructions. AND. ORR. EOR. and BIC. the Move
complement (MVN) instruction performs the logical NOT operation. The compare and
test instructions always affect the condition code flags.

The two Move instructions are used to transfer Operand 2 or its bit complement
into the destination register. Operand 2 can be contained in a register or it can be
an immediate operand. Thus. in addition to performing register transfers. these two
instructions are used to load constants into registers. The MVN instruction can be

used to load negative numbers in the 2’s-complement representation as follows. The
mstruction

MOV RO#-10
15 assembled as
MVN RO.#9

The bit-complement of 9 = 0 ... 0100} is I ... 10110, which is the 2’s-complement
representation for —10.

Multiply Instructions

The format and operation for the two multiply instructions are shown in Figure B.4
and Table B.2. None of the operands can be shifted. The product generated is a single-
precision 32-bit value.

B.1.2 MEMORY LOAD AND STORE INSTRUCTIONS

The format {or the two instructions used to access memory is shown in Figure B.5. and
their operation is shown in Table B.4. The L bit, bag. is | for a Load (LDR) instruction
and 0 for a Store (STR) instruction. The B bit, by, is 1 for a byte operand and is 0
for a 32-bit word operand. A byte operand is located in the low-order byte position of
Rdl. The effective address of the memory operand is determined by adding (U = 1) or
ubtracting (U = 0) the offset specified by the Offset field with the contents of register
Ri. The P and W bits determine the pre- or post-indexing and writeback operations as

742 APPENDIX B + ARM INSTRUCTION SET

31 28 19 16 15 12 11 8 7 4 3 0

Condition| & 0 0 0 0 0JA|S Rd Rn Rs 1001 Rm

l— Set Condition Code tlags

0: Do not alter flags
I: Set tlags

Accumulate
0: Multiply (MUL)
1 Multiply Accumulate (MLA)

MUL: Rd =— [Rm] x |Rs]
MLA: Rd <— [Rm] X [Rs] + [Rn}

Figure B.4 ARM Multiply and Multiply Accumulate instructions.

31 28 19 16 15 12 11 0

Conditionf O H{ I{PJU|B|W|L Rn Rd Oftset

L I J
I Source/Destination register

Base register
Load/Store
0: Store to memory (STR)
1: Load from memory (LDR)
Writeback
0: No writeback
I Write address into Rn
Byte/Word
0: Word
I: Byte
Up/Down
0: Subtract oftset from [Rn]
1: Add offset to [Rn]
Pre/Post indexing
0: Apply offset after transter
1= Apply oftset before transter

0: Oftfset = unsigned immediate value
11 S 3 0

It Shift 0 Rm

Oftset = shift [Rm] (unsigned)

Figure B.5 ARM load and Store instructions.

B.1 INSTRUCTION ENCODING

Table B.4 ARM instructions for single word or byte
transfer from/to memory

Mnemonic | Instruction | Operation

(Name) bits performed
B L
LDR 01 Rd — [EA]

(Load word)

LDRB 11 Rd — [EA]
(Load byte)

STR 00 EA — [Rd]

(Store word)

STRB 10 EA — [Rd]
(Store byte)

indicated in Figure B.5 and described in Table 3.1. The 1 bit determines how the Offset
field is interpreted. as specified in Figures B.5 and B.3. Note that only one of the two
shifting methods can be used on the contents of register Rimn.

Examples of memory access operations are as follows. For the instruction

[LDR RO.[RI1.#100]
the operation performed is

RO < [[R1]+ 100]
and the bit settings are [= 0. P =1, U= 1.B=0.W =0.and L = 1. The range of
offsets is £4095. For the instruction

LDR RO.RI.R2]
the operation performed is

RO « [[R1]+ [R2]]

with the 1 bit changed to 1 and all the other settings left the same.

When the offset is contained in a register. it can be shifted before being added to
or subtracted from the base register Rn. The shitt can only be specified by the 5-bit
immediate method shown in Figure B.3. For example. the instruction

LDR RO,RI.—R2.LSL #4]!
performs the operation

RO « [[RI] — 16 x [R2]]

743

744

APPENDIX B + ARM INSTRUCTION SET

and the effective address is written back into R1. The bit settings for this instruction
are]=1.P=1.U=0.B=0.W=1l.andL=1.

If the program counter. R15, is specified as the base register. the Relative addressing
mode is implemented as indicated in Table 3.1. In this case. pre-indexing without
writeback. along with an immediate offset. is used to generate the effective address of
the operand. The assembly language allows the absolute address of the operand to be
named. The assembler computes the offset value relative to the updated contents of the
program counter at the time the instruction is executed. For example. if the instruction

LDR RO.PARAMETER

is to be placed at address 1000 and the label PARAMETER represents the address 1100,
the assembler will generate the instruction

LDR RO.JRI5#92]

At the time the offset is added to the contents of the program counter. the counter has
been updated to contain 1008, so the offset must be 92 to generate the correct effective
address of 1100 = 1008 + 92.

B.1.3 BLOCK LOAD AND STORE INSTRUCTIONS

Figure B.6 shows the encoding for the instructions used to transfer data between a block
of consecutive memory words and a specified subset of the 16 processor registers. The

31 28 19 16 15 0

Condition] 1 0 O|PJU| - [W|L Rn Register list

———————————— Base register
Load/Store

0: Store multiple to memory (STM)

I': Load multiple from memory (LDM)
Writcback

0: No writcback

1 Write final address into Ra

Only has meaning in a privileged mode:
should be () in User mode.
Up/Down

0: Decrement Ru (by 4)

I Increment Rt (by 4)

Pre/Post indexing
0: Inc/Dec Rn after cach (ranster
I Inc/Dec Ra betore cach transter

Figure B.6 ARM block transfer instructions.

B.1 INSTRUCTION ENCODING

OP code LDM (Load multiple) is used for loading memory operands into the registers,
and STM (Store multiple) is used for the store operation. The L bit is 1 for the load
operation and O for the store operation. The registers involved are specified by the
locations of Isin the 16-bit Register-list field in bits by5_¢. The location of the beginning
of the block of words in memory is specified by the contents of the base register Rn. The
block runs toward higher addresses if the U bit is 1 and toward lower addresses if the
U bitis 0. Pre- or post-indexing of Rn is specified by the P bit. The index value is always
4 because the operands are consecutive 4-byte words. The final address generated in
performing the block transfer is written back into Rn if the W bit is 1; otherwise (W =0),
Rn is left containing the initial address. Irrespective of whether or not the block runs
toward higher or lower addresses, the lowest number register is always associated with
the lowest address value in the block. Table B.5 shows the OP-code mnemonics for
all possible settings of the P, U, and L bits. Suffixes on the LDM and STM OP codes
indicate the settings of the P and U bits. For example, the P = 0 and U = 1 settings
in the first entry in Table B.5 are indicated by the suffix IA, standing for “increment
after,” meaning that the contents of the base register Rn are incremented by 4 after each
transfer is performed, that is, Rn is post-indexed. The alternate mnemonics and names
shown in Table B.5 are explained next.

The main use for block transfers is in saving and restoring registers on a stack on
entry to and return from subroutines. If we assume that R13 is used as the stack pointer
and R14 (the link register) holds the return address, then the instruction

STMDB RI13!,{R0O—R3,R14}

which is the last entry in Table B.5, pushes the contents of registers RO through R3 and
R 14 onto the stack. The stack grows toward lower memory addresses and the contents
of RO are transferred last into the lowest address. The corresponding instruction

LDMIA RI13!,{R0O-R3,R15}

which is the first entry in Table B.5, pops the saved contents of RO through R3 back
into those registers, and pops the saved value from R14 (the return address) into
R15, the program counter, implementing the return operation. The contents of the
highest address are transferred last into R15. The suffixes DB and IA on these two
OP codes stand for “decrement before” (DB) and “increment after’” (IA), describing
how the base register contents are manipulated. The alternate OP-code mnemonics
(shown in Table B.5) that can be used for the same instructions are STMFD and
LDMFD. The suffix FD stands for “full descending.” This is meant to describe the
fact that the stack grows toward lower memory addresses (descending) and the ini-
tial contents of the base register, R13, are the address of the current top element
of the stack (full). For a stack that grows toward higher addresses and uses a stack
pointer that points to the empty location beyond the current top element, the descrip-
tor name is “empty ascending,” and the suffix is EA. The use of LDM and STM
instructions in entering and returning from interrupt service routines is discussed in
Chapter 4.

745

APPENDIX B

ARM INSTRUCTION SET

Table B.5 ARM instructions for multiple word transfers from/to memory

Mnemonic Instruction | Operation
(Name) bits performed
PUL
LDMIA/LDMFD 0 1 1 Rivw----- Ruigh — [[Rn]]. [[Rn] +4].. ..
(Increment after/
Full descending)
LDMIB/LDMED 1 11 Rigwe---- Rpigh — [[Rn] + 4. [[Rn] +8]....
(Increment before/
Empty descending)
LDMDA/LDMFA 0 0 1 Ruigh- -« Riow — [[Rn}].[[Rn} —4]....
(Decrement after/
Full ascending)
LDNMDB/LDMEA 1 01 Rhigh- ... Riow — [[Rn] —4].[[Rn] — 8]....
(Decrement before/
Empty ascending)
STMIA/STMEA 010 [Rn].[Rn] +4.... — [Ripw)e---- [Rhign]
(Increment after/
Empty ascending)
STMIB/STMFA 1 10 [Rn]+4.[Rn] +8,... « [Riow] - .- Rhign]
(Increment before/
Full ascending)
STMDA/STMED 0 0 0 [Rn]. [Rn] —4.... — [Rpign].. ... Riow)
(Decrement after/
Empty descending)
STMDB/STMFD 1 0 0 [Rn] —4.[Rn] = 8.... — [Rpign]..... Riow]

(Decrement before/
Full descending)

B.1 INSTRUCTION ENCODING

31 28 23 0

Condition I K Oftset

K=0 :Branch (B)
K=1 :Branch with Link (BL): store return address in register R14

Figure B.7 ARM Branch and Branch with Link instructions.

B.1.4 BRANCH AND BRANCH WITH LINK INSTRUCTIONS

Figure B.7 shows the encoding of the Branch (B) and Branch with Link (BL) instruc-
tions. Offset is a signed 24-bit number. It is shifted left two bit positions (all branch
targets are aligned word addresses), sign extended to 32 bits. and added to the updated
PC to generate the branch target address. The updated PC points to the instruction that
is two words (8 bytes) forward from the branch instruction.

The assembly language permits the absolute address of the branch target to be used.
For example, the instruction

BEQ ROUTINE

is a conditional branch on the condition Z = 1 to the location ROUTINE. If the Branch
instruction is at address 2000 and ROUTINE is the address 3000. the assembler will
compute the offset value to be inserted into the instruction as 248. The actual distance
to the target address from the updated contents. 2008. of the program counter is 992.
This value is 248 shifted left 2 bit positions (multiplied by 4). Thus. the branch target
address 1s computed as 2008 + 992 = 3000.

The Branch with Link (BL) instruction is used to call a subroutine. Before branch-
ing to the subroutine. the address of the instruction that immediately follows the BL
instruction (the return address) is stored in register R14, which is used as a link register.
The return from a subroutine is handled as described in Section 3.6.

B.1.5 MACHINE CONTROL INSTRUCTIONS

Software Interrupt

When execution of a user program is completed. control is transferred to a super-
visor program (part of the operating system) by a software interrupt instruction (SWI).
We did not show the SWI instruction in the example programs in Part I of Chapter 3.
An example of where it needs to be placed is immediately after the STR instruction
in the program in Figure 3.8. An SWI instruction is also used in transferring control
to operating system routines that run in supervisor mode while executing input/output
operations for a user program, as described in Chapter 4.

The assembly language instruction format for the SWI instruction is shown in
Table B.6, along with the operations performed. The OP code SWI is encoded by the

747

748

APPENDIX B

* ARM INSTRUCTION SET

Table B.6 ARM instructions for status register fransfers, software interrupt, and data swap

Mnemonic | Instruction Operation
(Name) formats performed
MRS User mode:

(Copy

status MRS Rd.CPSR Rd — [CPSR]

register)

Privileged mode:
MRS Rd.CPSR
MRS Rd,SPSR

Rd « [CPSR]
Rd « [SPSR.mode]

MSR User mode:
(Write to
status MSR CPSR.Rm CPSR31 -9z — [BRm]s)-28
register)
MSR CPSR.imm32 CPSRuq o «— imum323; oy
Privileged mode:
MSR CPSR.,Rm CPSR « [Rm|
MSR CPSR_ﬂng CPSR.g]..zg — [R‘I?l];gl_gg
MSR CPSR_flg,imm32 | CPSR3;_9x < imm323;_og
MSR SPSR.Rm SPSR_mode « [Rm)]
MSR SPSR-ﬁg,RJn SPSR,_'Hl()d(’,;;I_zx — [R]Il};n_gg
MSR SPSR flg.imm32 | SPSR_modes; 28 — imm32;3) o5
SWI SWI imm24 R14_svc « updated[PC];
(Software SPSR._sve « [CPSR};
interrupt) PC « 0x08
SWP SWP RdRm,[Rn| Rd — [[Rn]]:
(Swap) [Rn] — [Rm]

B.1 INSTRUCTION ENCODING

pattern 1111 in the instruction bit field by7 25 As with all other ARM instructions.
it can be executed conditionally. The low-order 24 bits of the instruction contain an
immediate operand that is ignored during execution of the instruction. The user program
can use this field to pass a parameter to the operating system to declare the service being
requested, such as an /O operation.

Processor Status Register Transfers

Instructions that handle the current processor status register, CPSR. and the saved
processor status registers. SPSR_mode (see Figures 3.1 and 4.12) are provided. mainly
for use by privileged mode programs. Limited use of these instructions in user programs
is also permitted. When an external interrupt suspends execution of a user program.
the current CPSR contents are automatically saved in an SPSR_mode register while
a privileged mode routine handles the interrupt. Such routines have to manipulate
status register contents. These issues are discussed in Chapter 4. The MRS and MSR
instructions. shown in Table B.6. are used for reading and writing the contents of the
CPSR and SPSR _mode registers. Both user mode and privileged mode programs can
read the status registers. User mode programs can write only to the N. Z. V. and C
condition code flags in bit field b3y oy of the CPSR register. Privileged mode programs
can write to all 32 bits of the CPSR and SPSR_mode registers, and can also write
selectively to just the condition code flag tield. The source operand for write operations
is either the contents of a general-purpose register or a 32-bit immediate value denoted
imm32 in Table B.6. Only the high-order 4 bits of an immediate operand are used. so
the operand can always be generated by a rotation of the short 8-bit immediate field
value in an instruction.

The MRS and MSR instructions are encoded in the machine instruction format
normally used for arithmetic and logic instructions (see Figure B.1). The CMP. CMN.,
TST, and TEQ instructions in this group. shown in Table B.3. always set the condition
code flags. Therefore. the S bitis always setto [inthese instructions. When the S bitis set
10 0. the four OP codes for these instructions represent the MRS and MSR instructions
operating on either the CPSR or the SPSR _mode registers. Other instruction bit positions
are used to distinguish between full or partial writes and register or immediate source
operands for the MSR instruction.

Register/Memory Swap

An instruction is provided that reads the contents of a memory location into one
register and writes the contents of another register into the same memory location in an
uninterruptible pair of operations. This Swap instruction (with the mnemonic SWP),
<hown in Table B.6. can be executed in either user or privileged modes. Its main use
is in implementing operations on lock variables to coordinate correct operations on
memory data that are shared between programs in multiprocessor configurations (sec
Chapter 12). Being “uninterruptible” means that no access to memory by a difterent
processor is permitted between the read and write operations performed by the Swap
instruction. The registers R and Rd can be the same, effecting an exchange operation
between the register and the memory operand.

749

750

APPENDIX B * ARM INSTRUCTION SET

B.2 OTHER ARM INSTRUCTIONS

In this section. we briefly describe coprocessor instructions and instructions introduced
in versions v4 and v5 of the architecture.

B.2.1 COPROCESSOR INSTRUCTIONS

Hardware units for executing operations not performed by the defined ARM instruction
set are called coprocessors. An example is a hardware unit for executing operations
on floating-point numbers. Other examples include application-specific processing on
digital signals or video data that may be required in an embedded system. If an ARM
processor design is provided in a software-synthesizable form. as described in Chap-
ters 9 and 11. a software module that specifies a coprocessor can be integrated with
the software description of the processor and used to generate a single-chip imple-
mentation. Programming of the combined units is facilitated by including instruction
templates in the ARM instruction set for directing the coprocessor to perform its op-
erations. transferring data between coprocessor registers and memory. and transferring
data between coprocessor registers and ARM registers.

B.2.2 VERSIONS V4 AND V5 INSTRUCTIONS

An extended set of memory access and multiply instructions have been included in the
two versions of the instruction set architecture that follow version v3. Versions v4 and va
have Load and Store instructions that transfer signed bytes and signed/unsigned 16-bit
half words between memory and the processor registers. Internally, ARM processors
perform operations only on 32-bit operands. When signed bytes or signed half words
are loaded into processor registers by v4 and v5 instructions, they are sign-extended to
the 32-bit length.

Versions v4 and v5 also provide additional forms of the MUL and MULA instruc-
tions found in version v3 (see Figure B.4). Signed and unsigned versions of these two
instructions that produce 64-bit products are provided.

B.3 PROGRAMMING EXPERIMENTS

The ARM web site URL: www.arm.com/hr.ns4/html/SDT202u contains software de-
velopment tools that can be used to enter. edit, assemble, and run (simulated) ARM
assembly language programs. For the program in Figure 3.8. the AREA directives
should be changed to

AREA addloop, CODE

AREA addloopdata, DATA

to enable assembly. Also. as described in Section B.1.5. a software interrupt instruction
in the form

SWI 0Ox123456

is needed after the SRT instruction.

